CSC Scientific Blog

A blog about test equipment

Subscribe in a reader

Subscribe via E-mail

Your email:

Posts by category

CSC Scientific Blog

Current Articles | RSS Feed RSS Feed

Can You Do a Fast Moisture Test?

Ask Art CSC

Can you do a fast moisture test?  The answer is, “maybe”.

The direct methods of Loss on Drying and Karl Fischer have the benefit that between them they can get a good moisture content result on almost any product or material.

But these tests usually take several minutes.

runnerWhen you need the moisture content in a truck load of grain while the load is being dumped, or when you need to check several hundred bags of coffee at an auction, or when you need to get a moisture gradient in a pile of corn, a faster test is crucial.


Can you do it?


The short answer is, “yes”.  There are, however certain caveats to this answer.

The techniques available for getting a faster moisture reading are based on the presence of an electrical/electronic signature of moisture in a material or substance. These techniques measure change in resistance, conductivity, capacitance or RF power absorption as an indication of change in moisture. In products where changes in any of these characteristics can be see with a change in moisture, the resulting levels will reflect a relative amount of moisture. 

To get actual moisture from a range of these electrical readings, a comparison has to be made to results from a direct method of moisture determination (such as Loss on Drying). These comparisons result in what is called a calibration curve, which is a plot of direct method vs. electrical readings.

CSC Sinar Portable moisture probe

For any of these indirect techniques used to get a fast moisture reading, the calibrations represent a curse. 

This curse is manifest first in that different substances have different relationships between moisture and electrical signal.  For example, a calibration curve for corn is different than a calibration curve for soya.  Each provides accurate measurements. However if you mix soya and corn, let’s say 40% corn and 60% soya, a new calibration will have to be done for this mix. Furthermore, if the mix proportions change, the calibration curve will be different.

The second part of the curse is that as moisture levels increase a state of relative saturation occurs. At this point, the change in electrical signal becomes small in relation to the change in moisture and an accurate, repeatable reading cannot be made.

Finally there are some materials that do not have an inherent relationship between electrical characteristic and moisture change, and these techniques cannot be used.

In conclusion, the answer is “yes” to getting a fast moisture measurement if your product exhibits changes in electrical/electronic characteristics with a change in moisture and it is lower than the cut of relative moisture saturation.

Check out our range of indirect moisture measurement products to see what might be available as a fast test for your material.

Everywhere I turn, what seems simple (fast moisture test) becomes indecipherable.


P.S. To get notification of new test equipment rants as they arrive, subscribe in the space above.


by Art Gatenby

What Can I Use To Get The Moisture Content In My Product?


Ask Art Ad

A question we get a lot is:

“How do I determine the moisture in my product?

Of course, the answer is often “it depends”, and the method does depend on the chemical and physical composition of the product. There are several methods used to determine moisture content: Loss-on-Drying (also known as Weight Loss), Karl Fischer, NIR, and Radio Frequency. 

Loss-on-Drying (Weight Loss)

Loss on Drying (LOD) is the most commonly used method. This method uses the principle of drying a sample of the product and comparing the weight before and after drying. The difference in weight represents the moisture that is in the product.

Early techniques used a laboratory oven to dry the sample for an extended period of time – up to several hours. Manual weight measurements were taken before and after the drying interval. The moisture content was calculated manually; normally using the formula (Beginning Weight - Ending Weight) / (Beginning Weight) resulting in a moisture percentage.

(Note that some applications use a Dry Weight basis, which is the weigh the sampledifference in before and after weights divided by the ending weight.)

 Automatic techniques have since been developed which shorten the test time and calculate the moisture content with built-in scales and software to record and calculate the data.


Wide Adaptable Product Range

Products that can be tested using automated LOD techniques cross a wide spectrum of materials that encompasses carbon black, products, chemical compounds and building materials. Testing for many of these products is easy to set up and measure.

chips can work for loss on drying testing

Products such as potato chips, gelatin, shampoo, and wastewater sludge and charcoal can be successfully tested on automatic LOD moisture balances using factory default settings.

There is a range of products that contain constituents which can distort moisture readings.  Examples are meat and dairy products, which include significant amounts of fat.  Also in this group of more difficult products are building plaster, printer paper and tobacco.  With special temperature set-ups and other adjustments to the test parameters, satisfactory results can be achieved for this type of material.

A third type of product, which, because of its chemical and mechanical structure, often has a very low moisture content, can be tested with automatic LOD.  However, the test parameter set up and the small levels of moisture make it difficult to get consistent test readings.  Other methods such as Karl Fischer give more satisfactory results.

Guidelines for Determining an Effective Method

In order to help identify products or applications that fit each type describe here, we set up a LOD rating for   a number of products.  These ratings are, stating with the easiest:

  1. Satisfactory Results with Factory Defaults,
  2. Acceptable Consistency of Results Can be Obtained with Temperature and Test Parameter Adjustments and
  3. Very Difficult to Achieve Satisfactory Repeatability – Other Methods Should Be Considered.

These rating are formatted in a table called “LOD Effectiveness for Common Applications.“ Click on the button below to access the chart. 

Get the Chart

Let us know if these ratings are useful.

Even simple questions like this tax my instrumentation reason.


P.S. If you are not subscribed to these Test Equipment rants and muses, sign up at the top of the page.

Moisture Content and Water Activity - What Are They?


Many accessing our web site ask questions such as:

  • “How does water content affect water activity?”

  • "How is water activity different from water content?”

  • ”Can I convert from moisture to water activity?”

I previously commented on water activity and now hope to clarify the differences between water activity and moisture content. Given that both of thesemoisture drop measurements deal with water connected to a material, we must first understand of water content in a product.

Put simply, moisture or water content is the amount of water a substance contains. Water can be present in many ways:

  • Absorption as a chemical reaction

  • Binding hydrate absorption and formation

  • Product structure molecular diffusion

  • Surface energy binding

  • Capillary condensation (which forms a solution)

  • Simple surface water

I trust that this demonstrates that product moisture is a complex concept.

With that understanding, here are a couple of simple definitions.

            Moisture content is how much water there is in a given material.

            Water activity is how difficult it is to remove the water.

 There are two basic direct techniques to measure moisture. Loss-on drying drives off the moisture by applying heat energy. Karl Fischer deconstructs the chemistry to free the moisture. Additionally, there are many indirect methods that must refer to the direct measurements.

Water activity is measured by letting a product sample reachMeasure Water activity equilibrium relative humidity in a closed temperature-controlled chamber. This allows water that is naturally released at that temperature to form a vapor and stabilize. When the resulting vapor pressure stops changing, no further moisture releases from the sample. 

Water activity is particularly important regarding packaging. A high water-activity item will probably emit moisture when placed in a sealed container. This moisture can then react with bacteria, mold and other pathogens to destroy product characteristics as well as cause disease. Thus, the need to know water activity levels is apparent.

Moisture content, by contrast, is important because it influences physical/mechanical properties, yield, texture -- and often the selling price of a material. It is also a significant factor in controlling the repeatability of a production process. 

How do we relate water activity to moisture content? This relationship varies between materials and changes with temperature. 

The moisture-to-water-activity relationship can developed by testing moisture content and measuring water activity at many different moisture levels and temperatures. Given that both moisture content and water activity need to be developed, the process is often tedious and time-consuming. There are, however, instruments that can develop these relationships automatically over several days. Each water activity measurement takes 5 to 20 minutes -- sometimes longer. Further, these correlations are different when a material is being dried vs. wetted. 

Moisture-sorption isotherms are the relationships of moisture content and water activity at a given constantmoisture sorption isotherm temperature. Although an increase in water activity is almost always accompanied by a rise in water content, these isotherms are non-linear. Therefore, easy rule-of-thumb conversions are not valid. 

Correlations between moisture content and water activity can be developed through experimental measurement collection for individual products. The resulting moisture sorption isotherms can then be used to predict water activity and moisture content for a given product. There are no known alternatives to the tedious data development process. 

I hope to have shed some light on the subject of moisture content -- what they are and how to convert between them.

To get notification of future rants on the subject of measurements and instrumentation, simply sign-up with your email in the box at the top of this article.

Until next time I remain a puzzled, 


P.S. Please share this with any associates who might find it  useful.

Do I Need A Karl Fischer Oven?


As you know the Karl Fischer Method of moisture analysis has a reputation of being water specific. The method works through the use of a special Karl Fischer Reagent.

Basics of Karl Fischer

As a quick review, the material to be tested is dissolved in a solvent. The water is released and converted by the reagent. This process happens inside an enclosed airtight titration cell. 

Karl Fischer Titration CellThe amount of reagent needed to make full conversion is a measure of moisture. Note that the material to be tested is dissolved in the presence of the reagent.

When Basic Karl Fischer will Not Work

As with many testing methods there are complications. Some substances are difficult to dissolve and require solvents that operate on the Karl Fischer reagent to cause side reactions that distort the water content calculation. Other materials only release the water at high temperatures. In these cases the simple process of dissolving the sample in the presence of the Karl Fischer reagent won't work.

Solution to the Problem Samples

The answer to side reaction problems or high temperature exigencies is an instrument known as a Karl Fischer Oven or Evaporator.Karl Fischer Oven A Karl Fischer Oven consists of a heating tube in which the temperature can be controlled between 60ºC to 300ºC. Provision is made for a carrier gas to flow through this heating tube and move the escaping water into the titration cell. When the sample is ready to be tested, it is placed into the heating tube (operating at the appropriate temperature for the sample). As the moisture is released, the vapor is transported by the gas (usually dry Nitrogen) to the titration cell where it is bubbled into the reagent. The Karl Fischer process is completed and the moisture content calculated. Some of the materials that need to be processed in an oven are plastics and salts. These Karl Fischer Oven/Evaporators are used with standard Karl Fischer Titrators. When the moisture content is low (<1%) the Coulometric technique is recommended, otherwise a Volumetric Karl Fischer titrator is used.


For more information on the Karl Fischer Moisture Method click here.

We hope that this has been useful. If it has please share it with you associates.

Another case where the simple has been complicated by reality.


P.S. To get notice of our musings on test equipment, subscribe by putting your email in the space above.
P.P.S. Check out the demo Video.

Thought Your Moisture Measurement Challenge Was Complicated?


As I've said many times measuring Moisture Content, Surface Tension and Particle Size often confounds me. 

Moisture measurements are nothing compared to the measurements needed to check out the Universe.  Came across this video and thought you'd fnd it interesting and fun. 

This makes understanding the instruments  we deal with  seem like childs play. 

A Loss-on-Drying Moisture test - No Problem. Surface Tension of a strange Liquid - A Piece of Cake. Or Particle Size Distribution of an agglomorated powder - A Picnic By The Shore.

I hope you found the Video as engaging as I did.

A bewildered as usual,


P.S. If you are not subscribed to these Test Equipment rants and muses, sign up by simply placing you email in the space above and clicking on subscribe.








Coulometric Or Volumetric Karl Fischer --Which Should I Use?


As usual when we pose a question,like:

Should you use Coulometric or Volumetric Karl Fischer to measure moisture in your product?

We often get a the reaction, “So Who Cares?” . We'll try to answer both questions.

When you really need to know the water content of your raw material, in-process status, final QC or shipment test comparisons our old friend Karl Fischer is often your best alternative. The techniqueKarl Fischer The Chemist has the benefit of detecting only water (and not other volatiles). Because it works with dissolved samples the Karl Fischer Method often gets to and measures bound water.

This technique uses a reaction of sulfur dioxide and iodine with water in the presence of a lower alcohol such as methanol and an organic base. This reaction changes the electrolytic properties of the sample material such that the completion of the reaction (or end point) can be detected through conductivity techniques.

A combination of these chemicals is included in a Karl Fischer reagent. The reagent permits the iodine to react with water in the sample. Either the reagent is:

  • Added to a sample until an end point is detected. The amount of water in the sample is determined by the amount or volume of reagent (i.e. Iodine) added to get an end point. This is the Volumetric Karl Fischer Method. or

  • The iodine is created by electrolysis from a special Coulometric Karl Fischer Reagent. This is a mixture of Karl Fischer reagent and a solvent into which the sample is introduced. An electrical current is applied until the end point is detected. The quantity of electricity needed to perform the electrolysis for an end point is measured. This is known as the Coulometric Method.

coulometric karl fischer cellThe sensitivity of a typical Coulometric Karl Fischer instruments can detect amounts of water as small as 1 micro-gram (1 micron). Consequently, this method is preferred for the highest precision needs. Because of this high resolution, low parts-per-million (PPM) water content can be detected using small samples.

The upper limit generally recommended for the Coulometric is about 2% water content or 200 micrograms of water. That would be a liquid sample size of 10 milliliters. The problem with larger samples is that they quickly fill up the Coulometric measuring cell; requiring a cleaning and a reagent refill. Preferred water content levels, for Coulometric Karl Fischer, are under 1% with 2 or less milliliters of sample. This results in water levels per sample of under 20 micrograms.

There are limitations to the range of Coulometric solvents available. In these cases, a Karl Fischer Oven can be use to drive off the water which can then be measured directly.

If the moisture levels are greater than 2%, the Volumetric Karl Fischer is typically theHanna Volumetric KF preferred method. In addition, Volumetric reagents allow a wider range of solvents. However, there are still circumstances where a Karl Fischer Oven is needed to get appropriate Volumetric results.

The net result of these considerations is a rule-of-thumb that the Coulometric method is the better choice where moisture content is less than 1% and the sample will work with available solvents. Other samples are candidates for the Volumetric Karl Fischer method

Hope this helped shed a little light on the comparative benefits of Coulometric and Volumetric Karl Fischer.

These complex factors constantly remind me that if we don't pay attention to the details of testing we can create unintended problems.

If  this was useful, feel free to share this with any colleagues who my find this interesting or helpful.

I remain your confused correspondent,


P.S. Subscribe, at the top of this page, to keep up with these excursions through the world of test equipment.

P.P.S. Click on the button to see our range of Karl Fischer Testing Instruments.


What is Moisture Content?


Last week, as I was reflecting on a recent moisture content problem, I recalled our series “Loss-on Drying and Other Moisture Mysteries.” In that series I examined moisture chemistry in products. However, I did little to define moisture content.

In the world of material testing, moisture content is different things to different people. However, there is a common concern. Manufacturers, distributors and retailers each are concerned with how moisture content affects what they are making, shipping, storing or selling. This will be today's focus.

My experience with checking for moisture in numerous materials and inMoisture Content is Moving Target different environments makes me conclude that moisture levels, measurement precision and absolute moisture amounts are moving targets. Moisture content standards for individual products, services or environments vary greatly.

What is important involving moisture content? Sometimes it is process yield. Sometimes it is the economics of water vs. other components of products. It could also be health and safety or a unique measure of final quality. Sometimes it is what takes place over time.

Considering all that, we wonder how best to determine total water. When the complexity of that task becomes apparent, we are tempted to question whether we care.

Let us indulge in a short digression to the main techniques we use to get closer to some answers. We dry materials until they stop losing weight and tentatively assert that the Water Dropletdifference between the starting and ending weights is that of the water. Stop! Are we certain that other volatiles did not leave with the water or decompose with the heat?

We have of necessity devised other ways of accounting for these possibilities. Chemical techniques like Karl Fischer Titration, desiccation, freeze-drying, distillation and chromatography are suitable alternatives.

Some users are oriented toward water activity, a technique that integrates temperature, vapor pressure, dew point and relative humidity to obtain accurate data

Frequently the results from each of these techniques differ from one another. It would seem, then, that determining “how much water” is technically challenging. An easy, catch-all method to get at water content levels remains elusive.

Water Content CompromiseIn the end, we must compromise rather than seek absolutes, focusing on what actually works for each product, process and end result desired.

Hope this stimulates some new solutions to your individual moisture content problems.

I continue to prove to myself, how little I know about the enigmas of determining moisture content.

I remain a mystified,


P.S. If these musings on lab test equipment are engaging, please consider forwarding them to associates and subscribing.

P.P.S. Check Out our range of moisture determination methods and techniques. Click on the button.



Why Do I Get Inconsistent Moisture Test Results?


Why are my Moisture Test results inconsistent?” 

That is an issue for many of you who test for moisture. We discussed the complexities and multiplicity of issues involved with moisture content determination Inconsistent Moisture Resultsin our “Loss-on Drying Moisture Analysis and other Moisture Mysteries” series.

In addition to intrinsic properties of test samples that may adversely affect moisture testing systems, automatic equipment parameter set-up, operator oversights and sample handling contribute to seemingly intractable moisture test result inaccuracies.

Common test sample vagaries include:

  1. Volatiles other than water that are released at close to the same vapor pressure as water evaporation.
  2. Strange conditions of entrapped moisture that release water at capricious times.
  3. Samples not representative of the principal batch


It is important to determine if these test sample quirks are responsible, because test protocols may require changing. Variations can also be minimized by running more tests to Karl Fischer Titration Cellstatistically reduce variation effects. In some cases, changes in test methods may be needed (i.e. Karl Fischer rather than Loss-on-Drying).

While trouble-shooting such problems, it is important to check automatic setting level and operation, which determine when a test is completed. With the Loss-on Drying method, these settings relate to measuring sample weight changes. If the instrument is set to stop too soon, the weight-loss curve will slope steeply and the moisture result will be subject to irregular variations from test to test. If the end-of-test calculation is based upon too small of a weight change, there is a potential for burning the sample -- another cause of inconsistency.

Similar problems can arise if widely different test-to-test sample weights are used in a timed test environment.

Another source of inconsistent analysis can be that a small amount of moisture requires detection. A small amount of sample and a very sensitive balance are frequently used for this type of test. Operators must carefully follow test procedures or the balance’s high sensitivity will yield wide result variations from test to test ( Often A switch to the Karl Fischer Method will Solve this Problem).

As equipment manufacturers, we will ultimately consider the possibility of instrument malfunctions. Our experience with instrument service leads us to either clear instrument failure Lab testsor consistent high or low results signaling equipment problems and not just inconsistent results.

Our troubleshooting protocols require duplicating clients’ problems in our lab. When we cannot, experience leads us to consider environmental conditions at our customers' facilities. Frequently, we find electrical power conditions to be responsible. Special power-conditioning equipment will usually solve this problem.

On occasion, we cannot find the sources of variation.

In summary, issues relating to test sample properties and/or or incorrect test parameters normally yield inconsistent results. Occasionally it is operator error. However, on rare occasions, test site environmental conditions are responsible.

Sometimes it requires painstaking investigation to find the cause. When found, we can usually then develop workable solutions.

I hope this sheds some light on the sources of inconsistent test results.

As usual, there is still a bit of witchcraft Witchcraft testing solutionsand folklore needed to solve the more elusive measurement  problems.

Still trying to get answers, I remain a puzzled,


P.S. Subscribe to these articles by clicking the  RSS buton or by inserting your email address in the space provided.


Karl Fischer Moisture – Answers to Questions We Get Asked


When People are first introduced to the Karl Fischer Moisture Determination Method, eyes glaze overKarl fischer Stirrer Bar and we can perceive a mental “Why did I Ask?

If you have any history with moisture analysis, you will have found, that for some applications, the Karl Fischer Titration Method is the best and sometimes the only way to get an accurate moisture measurement.

Most non-chemists react to the thought of titrations with “Not for me – do I have to do this?” Even the chemical formula for the Karl Fischer reactionKarl fischer Formulais mind blowing.

However, these days most of the pain is removed with automatic Karl Fischer instruments such as our Aquapal III, that make conducting Karl Fischer tests quite simple. There are still times when your not sure if the equipment is reading correctly or when it gives arcane messages like "Over Titration" that you feel panic. A host of other subtle problems bring on the question “What does this Mean?

Recently Hank Levi, a colleague of ours at Scientific Gear, developed a list of 20 questions that are periodically asked. He also developed concise answers. They are questions like;

  • Why won't my instrument get to the Ready Mode?
  • What kind of reagent should I use?
  • Is my instrument giving me correct results?
  • How much sample should I use?

We would like to share these with you. If you click on the button you can down-load the full list of  Karl Fisher questions and answers.


Hank tells us that some of his customers post this list in the lab where it is available for reference at any time to the staff conducting Karl Fischer moisture determinations.

Maybe this will help reduce trepidation about Karl Fischer and help get good repeatable results.

We hope that you check out this list and that it is useful to you. Again thanks for visiting.

I remain a wary respectful friend of Karl Fischer,


P. S. Subscribe to our blog.

Loss-On-Drying Moisture Analysis and Other Moisture Mysteries Part IV: Water Activity


Loss-On-Drying moisture analysis seemed like a simple process until, in a state of naïve bliss, I promised to look at evaporation, vapor pressure and bound water. Young WitchWhile I was otherwise occupied with these realities, I offered to enter the world of witchcraft and folklore; water activity.

I offer what will hopefully be an uncomplicated definition:

The energy or escaping tendency of water.

I would be happy if I could leave it at that, but I am compelled to relate water activity to good old Loss-On-Drying. Unfortunately, the concept begins in the complex world of Boyle, Charles and Dalton and their gas laws. These populate the Ideal Gas Law with considerationsChemistry Apparatus of pressure, partial pressure, temperature (at Kelvin no less) volume, molecules and moles.

Herein is my attempt to integrate these physics/chemistry phenomena to formulate a comprehensible description of water activity.

Let us first reflect upon a question I recently asked:

Should we care about the presence and amount of bound water?

The answer is very often yes and the reason frequently involves water activity.

There are many reasons water activity (aw) is important. If it is too high, it can cause spoilage, browning, mold growth, clumping and a host of other unpleasant effects. In fact, excessive aw can screw up a perfect blend of fruit and breakfast cereal (dried up fruit and soggy corn flakes).

It seems that water has an energy quotient that can lead it to enhance chemical reactions, cause bad things like bacteria growth or mix with other materials to mess up a good combination of components. Moisture content alone is not a predictor of this energy, however.

Each material has a natural relationship between moisturewater activity Isotherm content and water activity, called its Moisture Sorption Isotherm (MSI) defined as:

The relationship at equilibrium between water content and the equilibrium humidity of a material.”

This is effectively a moisture fingerprint. These isotherms change with temperature so it is not a static attribute.

The implications of water activity in the food industry are related to shelf-life, contamination, health, texture and taste issues. Thus, the aw measurement is becoming an ever-increasing factor in food product design and food process quality control.

Also, water activity is becoming a serious consideration in the development and production of pharmaceutical products. It is water activity and its relationship to moisture content [not moisture content alone] that determines whether microorganisms can access water in a system, adding an important dimension to production process control.

The relationship of aw to moisture content is likewise of growing importance in other products where water action affects either the production process or a product’s physical characteristics.

Water activity measurement is a relative humidity technique; a comparison of a sample’s vapor pressure at equilibrium to that of pure water. The measurement consists of placing a sample in a closed space, waiting for equilibrium to be reached and then measuring the resulting relative humidity in the air space. This is done using a calibrated capacitance cell or a chilled mirror (a technique that gets a dew point and converts that to relative humidity). The aw number is the percentage of relative humidity divided by 100.

Knowing the MSI of a product, you can convert moisture content measurements to water activity. Loss-On-Drying results can be converted to water activity for many products. When the Loss-On-Drying process removes only -- and all -- of the water, a conversion of the moisture percentage to awcan be made with the MSI for the product.

In my Witch flyingmusings and reflections on the science of the gas laws and mystical scientific witchcraft of water activity, I decided that to get you past a superficial understanding of water activity, you need a more expert source.

To get in-depth understanding about the action of water activity and how the measurements are used, I recommend Dr. Ted P. Labuza ( at the University of Minnesota. He is an internationally recognized expert on water activity. You can find a bio of Dr Labuza and a link to his publications at  this site.

I hope this helped in some way to cultivate an appreciation of the implications of water activity and the relationship of aw measurement to loss-on drying.

And I tried one more. Take a look.

As usual I remain a confounded,


P.S. Did you know that you can subscribe to these exposés, rants, raves and ramblings? All you have to do is click on the RSS Feed symbol at the upper left and you will get a notice when a new one is published. Or, if you prefer, you can also subscribe for e-mail notice by jotting your address in the box just to the right of the title.

All Posts

CSC Scientific Company, Inc
2799-C Merrilee Drive
Fairfax VA, 22031
703-280-5142 (fax)
Credit Cards CSC Accepts
No part of this page or any other page in this site may be copied or reproduced in any way.